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Non-Euclidean Manifolds in Computer Vision

I Why should we care? Because, we cannot ignore the real
geometry of the mathematical spaces.

What is the distance between Paris and San Francisco?

I An N-dimensional manifold M is a topological space where every
point is endowed with “local” Euclidean structure



Optimization on Non-Linear Manifolds

I Matrix Lie Group: Set of n x n non-singular matrices with a smooth
manifold structure

- {YER"X" Y'Y = I, det(Y 1}

A truck rendered at different orientations on SO(2) — Rotation Matrices

| Stiefel Manifold: Set of orthonormal matrices of size n x p

| Grassmann Manifold: Set of p-dimensional linear subspaces in n-
dimensions




Subspace Analysis on Grassmann Manifolds

Videos can be treated as Each set modeled as a  Analysis on the Grassmann
image sets linear subspace manifold

Gradient descent based optimization requires understanding of the characteristics of
loss functions on non-Euclidean manifolds



A Statistical Approach
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Improved Sample Designs Can Enable a Better

Understanding of the Optimization Surface



Existing Techniques Provides Poor Coverage

Projecting random samples created in the Euclidean space results in poor
coverage of the manifold
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Characteristics of a Good Sampling Pattern

I Inits most generic form the inference problem can be described as
recovering or analyzing a multi-variate, smooth function

f: M RY

defined on some manifold M C R™.

I Agood sampling pattern is expected to have two main properties

1. the sampling should be random
2. the samples should uniformly cover all the manifold



Sampling Euclidean Spaces:

Poisson Disk Sampling

I Generating Poisson Disk Samples
* Each sample is placed with uniform probability
* No two samples are closer than a pre-specified radius
* A PDS is maximal when no more points can be inserted




Grassmann Manifolds

I Linear subspaces of dimension k in n-dimensional Euclidean spaces
are points on the Grassmannian Gr(n, k)

Intrinsic Distance on the Grassmannian

Given two subspaces A, B € Gr(n, k), the geodesic distance
between them is measured as d(A,B) = (Z,le 02)1/2 where
{6;}%_, are the principal angles.

I Measures the smallest rotation that takes from one subspace to
another

I Chordal distance: (3, sin?6;)1/2 = %HAAT — BB'||F.



Dart throwing for Poisson Disk Sampling

Algorithm 1 Dart Throwing on the Grassmann manifold

Require: Dimensions (n, k), number of samples N and 7pmin,
S=10
1: while [S| < N do
2:  Throw a Dart 2:

e  Generate random matrix Z; € R***

e  Obtain the corresponding point Q € G, i as the QR
decomposition of Z;.

e AssignS; + Q@

3 if dg(sz S]) < Ton \VISJ € S then
4: Add sample S; to the point set S

5:  endif

6: end while




Proposed Scheme Provides Better Coverage

I Our proposed approach produces better uniform samples, thereby
leading to improved analysis and optimization
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Visualizing the sample distributions (MDS)
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Subspace Optimization using Grassmann
Samples

I Subspace Learning as Graph Embedding

Y* =arg min tr(VIXLXTV)
tr(VIXBXTV)=d

I Solution of PCA/LDA is approximated as a linear combination of the
Dart throwing samples S,

I Consensus based approach

N
V* = arq VITp\ifn—I tr (VT Z (O@I — QzSZS?) V)
o 1=1



PDS Samples are Very Effective in Preserving the

Desired Relationships

I Principal Component Analysis cost optimization using consensus on
the Grassmannian (higher is better)
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PDS Samples are Very Effective in Preserving the

Desired Relationships

I Principal Component Analysis cost optimization using consensus on
the Grassmannian (higher is better) T T e poA
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PDS Samples are Very Effective in Preserving the

Desired Relationships

I Comparison of the consensus embedding obtained using the LDA
cost on the Grassmannian, to the true solution obtained using
generalized eigenvalue decomposition
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PDS Samples are Very Effective in Preserving the

Desired Relationships
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Diverse Solutions

I Grassmann distance between the optimal solution and the linear subspace
inferred using the consensus from PDS samples for the Ecoli dataset.
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Why Does PDS Work?

I Sample design can be directly viewed from a function
reconstruction perspective — Fourier Domain Analysis

Fourier Transform Radial Averaging
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Characterizing Spatial Statistics

I In statistical mechanics, Pair Correlation Function describes how
density varies as a function of distance from a reference
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Key Idea for Spectral Sampling

I 1-D PSD and PCF are connected via the 1-D Hankel
transform

P(k)=1+p(2m)8k' "8 H,_, (r%—l(a(r) _ 1))

]
1.2} 05
c
o 1 >08
© ‘@
g 5 0.7
I 0.8 0,6 Zero
S ®  region
2 505
©0.6 8 " —p
Q0.4 303
= 2
S aool
%02
0.1+
O I I L 0 I I 1
0 0.05 0.1 0.15 0.2 0.25 0 200 400 600 800
Radius (r) Frequency



Summary

I Poisson disk sampling for better coverage of Grassmann

I Effective approximation of the optimal solution for subspace learning
problems

I High-quality samples can serve as anchor points to search through the
Grassmannian using conventional optimization strategies
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